
Biologically-Inspired Distributed Control Algorithms 
Problem Statement: ​Division-of-labor algorithms break up large problems into smaller, more          
manageable components that can be solved in parallel. These techniques are especially practical             
for solving distributed control problems, such as coordinating robot swarms or sensor networks             
[5]. Indeed, solutions that employ many simple agents are often more effective and more robust               
to noise than monolithic controllers. However, designing distributed control algorithms remains           
difficult: Humans are poor at predicting emergent, group-level behavior, as minor alterations in             
how agents interact can have cascading effects at the group level [5]. Worse, these distributed               
control problems often involve uncertain or noisy environments making a centralized controller            
unreliable and further reducing human intuition for distributed algorithm design.  

Elegant control algorithms that divide labor among distributed agents are common in nature.             
We need look no further than the algorithms encoded in the DNA of multicellular organisms or                
colonies of eusocial insects; in both cases, agents use noisy sensory information and localized              
signals to coordinate specialized roles. ​I propose to explore how evolution produces effective             
forms of division and to design distributed control algorithms using these principles. ​I will              
add new approaches to our toolbox for engineering distributed control algorithms.  
Background: ​Dynamic control algorithms must allow agents to alter their behavior in response             
to uncertain conditions; in biology, this ability is called ​phenotypic plasticity​ [1]. ​Distributed             
control algorithms require more complex forms of plasticity to ensure each individual contributes             
to group-level problem solving. While these topics are challenging to study in biological systems              
due to the long time scales at which evolution operates, computational evolving systems have              
allowed for substantial progress in understanding the evolution of both plasticity (​e.g.​ , [4]) and              
division of labor (​e.g.​ ,​ [2]). Digital organisms in these experiments are self-replicating computer             
programs in a Turing-complete language. They allow powerful studies of evolution, and the             
resulting programs can be analyzed, decomposed, and used to advance computational theory [3].  

While plasticity and division of labor go hand-in-hand, previous studies have initialized            
groups with non-plastic agents, forcing role assignment mechanisms to evolve from scratch [2]. 
Hypothesis I: ​Evolution will co-opt ancestral plasticity mechanisms as building blocks toward            
more complex coordination in distributed control algorithms. 
Hypothesis II: Evolutionary processes can be guided to produce substantially more effective            
control algorithms with the careful choice of ancestral state, customized to the problem type. 
Approach: ​I will study obligate groups of agents evolving under conditions known to promote              
division of labor [2]. Groups can replicate by performing collective tasks, replacing a random              
competing group. I will vary the types and complexity of the initial groups as well as the tasks                  
they must perform. For example, initial plasticity mechanisms will include:  

Signal-based plasticity relies on exogenous signals to determine the appropriate task, such as             
attempting to metabolize a resource only when it is present in the environment. I expect this                
form of plasticity to produce signal-based coordination, common in developmental biology. 
Location-based plasticity uses an agent’s position to resolve the appropriate task (​e.g.​ ,            
grooming in a den, while foraging in the open). Resulting division-of-labor strategies may             
involve agents moving around, performing local tasks that will contribute to the overall goal. 
Probabilistic plasticity employs a form of bet-hedging, randomly picking the next task and             
counting on positive results on average; commonly used to desynchronize from competitors or             



predators. I expect this technique to be valuable for division of labor when a range of tasks                 
must be performed, but communication and environmental signals are unreliable. 

I will evolve these groups of agents in a set of environmental challenges that will require                
organisms to either perform mathematical functions (​e.g.​ , Boolean XOR), navigate a landscape            
(​e.g.​ , foraging), or form patterns (​e.g.​ , stripes or a segmented body). Some environments will              
require groups to solve many tasks, others will be a single task that can be solved efficiently if                  
decomposed and divided among the group. In all cases, I will stress the group to promote robust                 
algorithms: I will impose noise on sensor inputs, trigger environmental changes, or kill agents. 
I will use four metrics to characterize evolved algorithms:  

Quality​  - How close is the result of this algorithm to an optimal (or the best known) solution?  
Efficiency​  - How does the run time of the algorithm scale as problem sizes increase? 
Scalability​  - How well does each algorithm perform as I increase the number of agents? 
Robustness - How well does an algorithm handle unexpected environmental changes, agent            
knock-outs, and additional environmental noise? 

Due to tradeoffs in these metrics, all algorithms along the pareto front will warrant analyses. In                
each case, I will step through the evolved code, classify phenotypes, and perform multi-scale              
analyses to identify how individual, neighborhood, and global behaviors interact.          
Instruction-level knock-out analyses will help me link code to function, as will            
information-theoretic analyses on sensor inputs and communications. Finally, I will create           
simple simulations of individual behaviors to tease apart their role in the global dynamics. 
Expected Outcomes: ​I expect evolution to co-opt pre-existing plasticity for distributed          
controllers once groups are formed, driving the type of distributed control algorithm that evolves.              
As such, I expect a wide range of control algorithms to evolve. Additionally, I expect different                
pre-existing mechanisms for plasticity to succeed or fail at different problem types, revealing the              
merits and faults of various distributed controller design practices for certain types of problems.  

For some environmental challenges, I may find that groups do not evolve that can solve the                
problem. If so, the problem environment may be poorly defined or I may be failing to properly                 
reward intermediate solutions. Identifying this pitfall is a matter of systematically simplifying the             
problem until it can be solved, and then slowly scaling it back up until the problem is clear.  
Broader Impacts: My research will contribute to both computer science and evolutionary           
biology. As such, I will publish my findings in peer-reviewed journals and present at conferences               
in both fields, facilitating further collaborations between the fields. In collaboration with the             
Digital Evolution Lab, I am contributing to the development of the next generation of Avida, a                
widely used open source computational evolution platform that I will use to carry out my               
proposed research. In addition to adding new features (​e.g.​ more advanced, physics-based            
environments), the platform will use asm.js to run efficiently on the web, increasing its              
accessibility to other scientists as well as the general public. In addition to sharing my research                
findings through journal articles and talks, I will publish web pages to automatically load my               
experiments and data visualizations with explanations for the general public, allowing anyone to             
explore distributed control problems. 
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